Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

نویسندگان

  • Guido Kanschat
  • Dominik Schötzau
چکیده

We develop the energy norm a-posteriori error analysis of exactly divergence-free discontinuous RTk/Qk Galerkin methods for the incompressible Navier-Stokes equations with small data. We derive upper and local lower bounds for the velocity-pressure error measured in terms of the natural energy norm of the discretization. Numerical examples illustrate the performance of the error estimator within an adaptive refinement strategy. Copyright c © 192007 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy Norm shape A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem

In this paper, we develop the a posteriori error estimation of mixed discontinuous Galerkin finite element approximations of the Stokes problem. In particular, we derive computable upper bounds on the error, measured in terms of a natural (mesh–dependent) energy norm. This is done by rewriting the underlying method in a non-consistent form using appropriate lifting operators, and by employing a...

متن کامل

Energy Norm A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem

In this paper, we develop the a posteriori error estimation of mixed discontinuous Galerkin finite element approximations of the Stokes problem. In particular, we derive computable upper bounds on the error, measured in terms of a natural (mesh–dependent) energy norm. This is done by rewriting the underlying method in a non-consistent form using appropriate lifting operators, and by employing a...

متن کامل

Robust Globally Divergence-free Weak Galerkin Methods for Stokes Equations

This paper proposes and analyzes a class of robust globally divergence-free weak Galerkin (WG) finite element methods for Stokes equations. The new methods use the Pk/Pk−1 (k ≥ 1) discontinuous finite element combination for velocity and pressure in the interior of elements, and piecewise Pl/Pk (l = k − 1, k) for the trace approximations of the velocity and pressure on the inter-element boundar...

متن کامل

Adaptivity and a Posteriori Error Control for Bifurcation Problems II: Incompressible Fluid Flow in Open Systems with Z2 Symmetry

Abstract. In this article we consider the a posteriori error estimation and adaptive mesh refinement of discontinuous Galerkin finite element approximations of the bifurcation problem associated with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable error estimation of the critical Reynolds number at which a steady pitchfork bifurcation occurs when...

متن کامل

An Equal-Order DG Method for the Incompressible Navier-Stokes Equations

We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability of this equal-order approach is ensured by a pressure stabilization term. A simple element-by-element postprocessing procedure is used to provide globally dive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008